If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60=-16x^2+96x
We move all terms to the left:
60-(-16x^2+96x)=0
We get rid of parentheses
16x^2-96x+60=0
a = 16; b = -96; c = +60;
Δ = b2-4ac
Δ = -962-4·16·60
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{21}}{2*16}=\frac{96-16\sqrt{21}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{21}}{2*16}=\frac{96+16\sqrt{21}}{32} $
| -2=4x-10=6 | | 2c+4=3c=-9+c=5 | | 3+x/2=35 | | 5s=-8s2+3 | | -4=-q2 | | 4(x-1.9)=5.2 | | 5s2+8s=-4 | | 5q+15=3q+1 | | 8(10-k=2k | | (4x+1)=28 | | 7r2+3r–4=0 | | (8-6i)+(7+4i)=0 | | 5(3v-5)(v+4)=0 | | 9w2+8=5w | | 5(x+3)=3(x+5 | | 4p+25=-p^2+30p | | 3t2=4t | | 2/3=(4u-5) | | 5y2–4y–6=0 | | 4/5(5x+1)=28 | | 3b+12=3(b−5) | | 4r2+4r+1=0 | | x2-32=0 | | z2+7z+9=0 | | 9p+5=-3 | | 4÷5(4x+1)=28 | | 2z2=-5z | | 2(2a+10)=5(a+5) | | 7x+7x+5x=180 | | (x-3)4=24 | | 2p2+9=0 | | x+(x+12)+2(x+12)=216 |